If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+41x-6=0
a = 30; b = 41; c = -6;
Δ = b2-4ac
Δ = 412-4·30·(-6)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-49}{2*30}=\frac{-90}{60} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+49}{2*30}=\frac{8}{60} =2/15 $
| 2(-3+4)=5x+2 | | -2v-24=4(v-9) | | 4.3x=51.6 | | -1.8x=4(x+2.19) | | x+5x=(x-2) | | 3/x=2/5-x | | -1.8x=4(x+2.19 | | 5x-12+20=-3 | | -4(y+6)=5y-33 | | t=2t-37 | | 5|x-7|=40 | | -4(q+7)=5(2q-7) | | 2x^2+2x-22=0 | | 2b-2+b+5=180 | | -8w+4=6(w+3) | | 4w=6+6w+-3 | | -24=-5+a | | 8c+7=5c-14 | | 11/9=7/x | | 10/9-(5x-3)=1/5x-2 | | 2(2=6x)-8x=-16 | | -42=6c+8 | | 10/9-(5x-3)=1/5x-13 | | 4e=4008 | | 17-w=25 | | (4x+10)4=360 | | 2(x+6)=2(6+.33x) | | -2a=-5+a | | 3x-4+x+17=180 | | -31/3t+50=-5t+100 | | 4(u-2)-7u=-11 | | 8a-40=9a-47 |